本文主要讨论电源分配结构三方面的转变:例如中间总线结构的面世;数字控制技术的出现;以及采用负载点电源管理技术的新趋势。以上的每一个转变都可视为电源分配技术的一个新突破,让系统的使用寿命和性能可以提高至前所未有的水平。
>>详情伴随着电源分配结构的负载数目不断增加,而且负载本身也越趋复杂,因此系统设计工程师必须解决负载电源的管理问题。像现场可编程门阵列及数字信号处理器等复杂负载尤其需要电源供应系统为其核心及输入/输出分别提供不同的供电。
>>详情芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。随着芯片的集成度越来越高,内部晶体管数量越来越大。芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。
>>详情一般来讲,开关频率越高,输出滤波器元件L和CO的尺寸越小。因此,可减小电源的尺寸,降低其成本。带宽更高也可以改进负载瞬态响应。但是,开关频率更高也意味着与交流相关的功率损耗更高,这需要更大的电路板空间或散热器来限制热应力。目前,对于 ≥10A的输出电流应用,大多数降压型电源的工作频率范围为100kHz至1MHz ~ 2MHz。 对于
>>详情如今,对能源效率的需求影响着自动化的所有领域。这包括各种白色家电,它们是在家庭自动化概念与如今完全不同的时代构想出来的。几十年前,当我们开始依赖这些设备时,能源的经济和环境成本没有消费者便利性那么重要,但这种不平衡最近发生了改变,如今人们正在努力加以解决。
>>详情显然是高效率。在SMPS中,晶体管在开关模式而非线性模式下运行。这意味着,当晶体管导通并传导电流时,电源路径上的压降最小。当晶体管关断并阻止高电压时,电源路径中几乎没有电流。因此,半导体晶体管就像一个理想的开关。晶体管中的功率损耗可减至最小。高效率、低功耗和高功率密度(小尺寸)是设计人员使用SMPS而不是线性稳压器或LDO的主要原因,特别是在高电流应用中。例如,如今12VIN、3.3VOUT开关模式同步降压电源通常可实现
>>详情任何系统的运转都需要能量。计算机系统依靠电能运行。而能量的获取是有成本的,因此如果能在保证系统运转的基础上,尽量节省对能量的消耗,就会大大提升该系统的生存竞争力。这方面,大自然已经做的很好了,如植 物的落叶,如动物的冬眠,等等。而在计算机的世界里(这里以运行Linux OS的嵌入式系统为例),称作电源管理(Power Management)。
>>详情近年来,电源管理和USB是两个正在飞速发展。自从厂家把USB所需的控制芯片加入到外围设备的ASIC(专用IC)中,PC对USB的支持只需要增加成本不到1美元的插座。这大大刺激了USB的发展。Microsoft推出的PC98和PC99系统已宣布将USB和HID作为其支持的工业标准之一。电源设备作为通用型设备,也越来越向标准统一的方向发展,USB标准在电源设备的实现,大大提高了电源设备的通用性,简化了电源设备的控制和管理。可以想见,随着USB的发展,US
>>详情通常情况下在实时嵌入式系统中可部署一些设计及运行时电源管理技术。尽管我们讨论的是某些可扩大标准多线程读取操作系统(OS)的特定电源管理技术,但应当强调指出的是,采用抢先式(preemptive)的多线程读取OS本身常常能够实现显著的电源节约。不利用OS的实时应用常常要求应用周期性探询接口以检测事件。从电源角度看,这样的效率是相当低的。使用OS可使应用能够利用中断驱动模式,其中程序就会在需要的时候开始执行,以响应外部事件
>>详情