在无刷电机中,电流反转是通过微控制器控制的一组功率晶体管(通常是 IGBT)以电子方式获得的。驱动它们的主要问题是了解电机的准确位置;只有这样控制器才能确定驱动哪一相。转子的位置通常使用霍尔效应传感器或光学传感器获得。在效率方面,由于摩擦减少,无刷电机比同等交流电机产生的热量少得多。
>>详情软件和硬件都是所有电机控制系统的一部分,例如 IGBT、WBG 半导体和 MCU。工业4.0的发展强烈依赖于电机控制,但能源消耗是一个关键问题,因为它正在快速增长,并且需求随着设计的复杂性而增长,因为许多电子技术都有严格的控制要求。宽带隙 (WBG) 材料就是这种情况的一个例子。
>>详情大多数逆变器设计中的微控制器 (MCU) 用于监控故障情况并做出反应,以及控制电机驱动。使用标准软件包实现电机驱动控制非常简单且相对快速。故障诊断和保护更具挑战性,并且从一种应用到另一种应用可能存在很大差异,因为它们依赖于各种不同的传感器来监测相电流、系统过热状况、振动和其他系统参数。
>>详情步进电机有两相或多相;两相步进器可以单极配置或双极配置驱动。这里选择的电机是单极电机。该项目使用单极驱动电路,但仅供记录,允许单极驱动的电机也可以由双极驱动电路控制。
>>详情您可能已经在框图中注意到 EFM8 似乎由 DC/DC 转换器的 5 V 供电。但实际上,EFM8 有一个集成的线性稳压器,可接受 5 V 输入并生成 3.3 V 电压供自身使用和外部电路使用。J2 是一个三针接头,允许用户通过 DC/DC 转换器或 USB 连接提供的 5 V 电压为 EFM8 供电。
>>详情变速驱动(VSD)电机为大幅降低能源消耗和对外国燃料的依赖带来了希望。一种方法是使用数字信号处理器 (DSP) 为无刷直流 (BLDC) 电机等电机创建新一代基于 VSD 的控制器。
>>详情从定速电机转向提供位置和电流反馈的变速电机,不仅可以实现工艺改进,还能节省大量能源。本文介绍了电机编码器(位置和速度)、器件类型和技术以及应用案例。此外还解答了一些关键问题,例如对特定系统最重要的编码器性能指标有哪些。本文将探讨编码器应用中电子器件的未来发展趋势,包括设备健康监测和智能型长期稳健的检测。最后,本文解释了为什么完整的信号链设计是实现新一代电机编码器设计的基础。
>>详情为了防止电池过度充电,使用了模拟比较器 ACMP1H。电阻R8和R9将电池电压分成两半,并将该电压施加到引脚11的输入。然后通过迟滞为100 mV的比较器将其与725 mV的参考电压进行比较。如果分压器的电压达到该参考电压,电池充电就会停止。使用延迟宏单元DLY2作为滤波器。
>>详情电机在禁用时能够快速停止在特定位置。因此,考虑到这一要求,我首先确信采用快速衰减模式就是我所需要的。可以合理地假设“快速衰减”对应于快速减速。我错了。在阅读了这个问题后,我意识到术语慢衰减和快衰减与流经电感器的电流相关,并且与直流电机的行为没有直接关系。
>>详情工业4.0为远距离实现边缘智能带来了曙光,而10BASE-T1L以太网的数据线供电(PoDL)功能、高数据传输速率以及与以太网协议兼容也为未来发展铺平了道路。本文介绍如何在自动化和工业场景中集成新的10BASE-T1L以太网物理层标准,将控制器和用户界面与端点(例如多个传感器和执行器)连接起来,所有器件均使用标准以太网接口进行双向通信。
>>详情