随着摩尔定律的每转变,设计人员在开发过程的每个阶段都面临着新的复杂程度的挑战。芯片设计师不仅要在块硅片上获得正确的集成电路( IC) 逻辑、性能、功率和产量。
>>详情具体而言,传感器通过检测手机当前位置的大气压力,利用大气压与海拔高度的换算关系,将压力转化为海拔高度,即可实现GPS辅助定位,为用户提供精准的海拔信息。同样的,在水下,通过水压与水深的换算关系即可得出当前所处水下深度。
>>详情将LVDT(线性可变差动变压器)连接到微控制器可能具有挑战性,因为LVDT需要交流输入激励和交流输出测量来确定其可移动磁芯的位置(参考文献 1 ).大多数微控制器缺乏专用的交流信号生成和处理能力,因此需要外部电路来生成无谐波、幅度和频率稳定的正弦波信号。将LVDT的输出信号的幅度和相位转换为与微控制器内部ADC兼容的形式通常需要额外的外部电路。
>>详情许多从我们周围世界捕获信息的传感器都是电阻式的。一些示例是 NTC、PTC、LDR 和接触式传感器。如果我们将传感器的电阻转换为频率或脉冲持续时间,则大多数 MCU 都可以测量这些参数,而无需 ADC。
>>详情那些必须执行的工程项目,速度要求在不断加快。无论是在产品开发实验室或是进行现场测试的工程师,他们都需要处于能够快速响应新测试需求的状态。
>>详情使用传感器测量电路中不同的功率相关参数时,会遇到不同的挑战。主要挑战是保持传感器和电源电路之间的电气隔离,以防止电源电路波动对测量的影响。高效隔离还有助于保持高频开关电路中的测量精度,该电路极易受到这些高频开关通过接地环路产生的噪声的影响。
>>详情在用于汽车 SoC 的纳米技术中,硅上的大多数缺陷都是由于时序问题造成的。因此,汽车设计中的全速覆盖要求非常严格。为了满足这些要求,工程师们付出了很多努力来获得更高的实速覆盖率。主要挑战是以尽可能低的成本以高产量获得所需质量的硅。在本文中,我们讨论了与实时测试中的过度测试和测试不足相关的问题,这些问题可能会导致良率问题。我们将提供一些有助于克服这些问题的建议。
>>详情汽车行业技术创新的核心是三大发展趋势:电气化和电池、联网汽车及其后续数据、自动化。在上一篇文章中,我们讨论了电气化和电池,以及一次充电增加容量和续航里程的关键挑战。在这篇文章中,我们将介绍智能网联汽车,它在车轮上创建了一个自动数据中心。
>>详情碳化硅(SiC)和氮化镓(GaN)为代表的新一代宽禁带(WBG)材料的使用度正变得越来越高。在电气方面,这些物质比硅和其他典型半导体材料更接近绝缘体。这些物质的采用旨在克服硅的局限性,而这些局限性源自其是一种窄禁带材料,所以会引发不良的导电性泄漏,且会随着温度、电压或频率的提高而变得更加明显。这种泄漏的逻辑极限是不可控的导电率,相当于半导体运行失效。
>>详情车载网络 (IVN) 能够让微控制器和发动机控制单元 (ECU) 处理器与传感器、执行器、指示器、显示器之间实现相互通信。控制器区域网络 (CAN) 总线便是经典的 IVN 之一。CAN 问世至已有近三十年,并且仍在继续发展。
>>详情