人工智能机器人是改变机器人执行操作方式的技术奇迹之一。如今的机器人技术不再仅仅局限于机械和电子技术,在计算机科学的帮助下,人工智能机器人正在变得更加智能和高效。
>>详情数据是各种现代企业的生命线,而数据存储、访问与管理策略对企业的生产力、盈利能力以及竞争力会产生显著影响。随着人工智能(AI)的兴起,各行各业都在经历变革,企业不得不重新思考如何利用数据来加速创新和增长。然而,AI训练和推理对数据管理和存储提出了独特的挑战,因为它们需要处理庞大的数据,同时要求高性能、可扩展性和高可用性。
>>详情如果企业拥有数据中心,需要关注的是人工智能(AI)技术可能很快就会部署到数据中心。无论AI系统是一个聊天机器人,还是横跨多个系统的自动化流程,亦或是对大型数据集的有效分析,这项新技术都有望加速和改善许多企业的业务模式。然而,AI的概念也可能会令人产生困惑和误解。是德科技的这篇文章旨在探讨有关AI网络如何工作以及该技术面临的独特挑战等五个方面的基本问题。
>>详情探讨了人工智能(AI)的普及给嵌入式设计人员带来的新挑战。在创建“边缘机器学习(ML)”应用时,设计人员必须确保其能有效运行,同时最大限度地降低处理器和存储开销,以及物联网(IoT)设备的功耗。
>>详情训练生成式人工智能(GenAI)神经网络模型通常需要花费数月的时间,数千个基于GPU并包含数十亿个晶体管的处理器、高带宽SDRAM和每秒数太比特的光网络交换机要同时连续运行。虽然人工智能有望带来人类生产力的飞跃,但其运行时能耗巨大,所以导致温室气体的排放也显著增加。
>>详情在不断发展的技术格局中,人工智能 (AI) 是推动各行业创新的关键力量。从彻底改变医疗诊断到改变金融服务和工业 4.0,人工智能的影响深远而深远。然而,随着人工智能能力的不断扩展,一场新的争论出现了:边缘还是云?
>>详情安森美 (onsemi) 的中低压 T10 PowerTrench® MOSFET 采用了新型屏蔽栅极沟槽技术,降低了开关损耗和导通损耗,并进而显著降低了其 Qg,RDS(ON) 也降至 1mOhm 以下。其中的先进软恢复体二极管缓解了振铃、过冲和噪声问题,同时降低了 Qrr 损耗,为快速开关应用找到了性能与恢复时间的平衡点。
>>详情现代社会的各个方面都需要先进的人工智能(AI)来处理,例如对周围环境的识别、行动决策和运动控制,这包括工厂、物流、医疗、城市中的服务机器人以及安全摄像头等应用场景。然而,要在边缘端实现人工智能,我们需要克服两大挑战:功耗和灵活性。
>>详情我们相信,AI的需求量将在短时间上升至300 亿。因为我们预期PMMP(People-Machine-Machine-People)通讯模式将成为新常态,每个用户的手机都将运行各式各样的AI应用程序并连通多个云端服务器以提供大家所需的资讯和功能。这些机器与机器间的相互协作将大幅增加,推动半导体产值冲破1万亿美元。
>>详情