毋庸置疑,制造业是社会经济发展的重要支柱,不过在实际中,昂贵的机器维护费用、较低的生产效率以及突发的产品故障等不利因素一直困扰着整个制造业。随着物联网(IoT)和人工智能驱动的工业自动化的出现,制造商可以通过将人工智能(AI)算法与机器人和机械相结合来优化流程并达到新的效率。
>>详情随着系统变得越来越以数据为中心,工业、物联网、家庭医疗可穿戴式、健身和健康方面的监控器正在经历爆炸性增长。这些以数据为中心的系统对更多功能和更低功耗的需求不断增加。该趋势由智能系统驱动,这些系统会主动监视一个人或环境,并做出预测性的响应,包括告警、动作或推荐的操作。
>>详情机器视觉(MV)是一种使机器人和自动驾驶汽车等其他机器能够看到和识别周围环境中物体的技术。在过去几年里,机器视觉的进步使得许多机器人和自动驾驶汽车拥有了几乎与人类相似的感知水平。这个过程主要是通过将光学传感器与人工智能和可以分析和处理图像数据的机器学习工具进行配对,此时搭载了机器视觉系统的机器人和自动驾驶汽车就能够执行非常复杂的任务了。
>>详情人工智能(AI)革命已经到来。 随着ChatGPT等应用的公开发布,人们得以利用深度神经网络和机器学习(ML)的力量和潜力获得亲身体验。ChatGPT是一个语言模型,该模型使用来自互联网和书籍的海量文本数据进行了训练,能够生成类似真人撰写的文本。 这种类型的应用完美体现出了人工智能的优势。它可以通过大量的训练数据不断优化在复杂场景下的输出。
>>详情不过,就像AI可以被黑客用来作为攻击的手段一样,AI强大的能力,本身也可以作为一种安全工具被加以利用。今天的网络安全厂商正在引入AI技术,去解决传统防御方案解决不了的新威胁,提高原有检测方案的检测精度,进行更高效自动化数据分类,实现更快的威胁响应处置。也就是说,AI不仅可以被用于对抗已有的攻击,也可去感知和预测未来可能发生的安全威胁,这就使得安全防御变得更加积极。
>>详情人工智能(AI)在很多人眼里是,只是一种科幻片中不明觉厉的存在,而与普通人的生活之间隔着很远的距离。但是这样的局面正在被改变,在未来5-10年中,AI将会以超乎我们想象的速度快速渗透到我们生活的方方面面。为什么这么讲?一起随我们往下看。
>>详情随着人工智能向边缘侧的转移,AI行业的应用得到了极大扩展。根据德勤的分析,现在的AI计算已经在制造业、政府、零售、电信、医疗等不同应用场景下获得应用。很显然,边缘智能在拓展AI边界过程中发挥了重要作用,它能显著提升AI针对现场多样化业务场景的适应性,从而更好地支撑业务运营、为客户创造更多的价值。
>>详情