在功率转换中,效率和功率密度至关重要。每一个造成能量损失的因素都会产生热量,并需要通过昂贵且耗能的冷却系统来去除。软开关技术与碳化硅(SiC)技术的结合为提升开关频率提供了可能;从而能够缩减暂存能量和用于平滑开关模式转换器输出无源元件的尺寸及数量,还为转换器构建了减少发热量并由此使用更小散热片的基础。
>>详情储能系统 (Energy storage system) 在建设低碳世界的过程中发挥着关键作用,也是目前最蓬勃发展的工业应用之一。究其原因,主要包括各国以脱碳目标为主导的积极政策、新能源应用快速发展过程中对光伏发电等可再生能源存储和控制的需求,以及锂离子电池成本的不断降低。储能系统在应用方面与光伏系统和电动汽车充电站密切相关,它们在硬件设计和元器件选择方面有着相似之处。本指南将全面介绍储能系统及其市场,以及安森美(onsemi)提供的先进产品和解决方案,本文为第一部分,将重点介绍储能市场概况以及系统设计框架。
>>详情本文将带您深入探讨设计工程师在热设计过程中需要关注的一些关键问题。具体来说,我们将聚焦大功率氮化镓(GaN)器件及其在实际应用中所面临的相关热问题。
>>详情氮化镓充电器和普通充电器之间的主要区别在于其功率转换元件所采用的材料和工作原理。具体来说,氮化镓充电器通常采用氮化镓(GaN)半导体器件,而普通充电器则通常采用硅(Si)半导体器件。
>>详情氮化镓 (GaN) 半导体在 20 世纪 90 年代初首次作为高亮度蓝色发光二极管 (LED) 投入商业应用,随后成为蓝光光盘播放器的核心技术。自此以后虽已取得长足进步,但在将近二十年后,该技术才因其高能效特性而在场效应晶体管 (FET) 上实现商业可行性。
>>详情在设计电源转换器时,碳化硅 (SiC)等宽带隙 (WBG) 技术现在是组件选择过程中的现实选择。650V SiC MOSFET 的推出使其对于以前未考虑过的应用更具吸引力。
>>详情随着技术的迅速发展,人们对电源的需求亦在不断攀升。为了可持续地推动这一发展,太阳能等可再生能源被越来越多地用于电网供电。同样,为了实现更快的数据处理、大数据存储以及人工智能 (AI),服务器的需求也在呈指数级增长。鉴于这些趋势,设计人员面临着一项重大挑战:如何在持续提升设计效率的同时,在相同的尺寸内实现更高的功率。
>>详情Cascode GaN FET 比其他类型的 GaN 功率器件更早进入市场,因为它可以提供常关操作并具有更宽的栅极驱动电压范围。然而,电路设计人员发现该器件在实际电路中使用起来并不那么容易,因为它很容易发生振荡,并且其器件特性很难测量并获得可重复的提取。许多设计人员在电路中使用大栅极电阻时必须减慢器件的运行速度,这降低了使用快速 GaN 功率器件的优势。
>>详情在当今全球汽车工业驶向电动化的滚滚浪潮中,一项关键技术正以其颠覆性的性能改变着电动汽车整体市场竞争力的新格局,它便是基于碳化硅(SiC)材料打造的主驱逆变器。就像电子领域的“黑科技”催化剂,SiC正以其耐高压、高热导率及低损耗特性,重新定义新能源汽车的核心部件的工作效能极限,并以前所未有的方式推动整个行业朝着更长续航、更高能效的方向疾速前行。
>>详情