器,到 LED 照明、白色家电、电机驱动、智能仪表和工业系统等。对于这些离线反激式电源的设计者来说,面临的挑战是如何确保稳健性和可靠性,同时继续降低成本,提高效率,缩小外形尺寸以提高功率密度。
>>详情本文将从二氧化碳减排、未来动力总成的技术驱动因素等角度对商用车进行讨论,并探讨了基于碳化硅(SiC)的现代半导体器件,这些器件可以实现外形更小、效率更高和功能更强大的转换器。在商用车领域,与乘用车相比,由于驱动架构不同,这个领域并没有一个通用的解决方案适用于所有情况。
>>详情随着我们寻求更强大、更小型的电源解决方案,碳化硅 (SiC) 等宽禁带 (WBG) 材料变得越来越流行,特别是在一些具有挑战性的应用领域,如汽车驱动系统、直流快速充电、储能电站、不间断电源和太阳能发电。
>>详情氮化镓功率半导体器件毫无疑问是目前电力电子领域中非常火热的一个话题。当今占主导有两种晶体管类型:Normally-off D-mode和Normally-off E-mode 氮化镓晶体管。当人们面临选择时,有时会难以言明地倾向于使用增强型晶体管。而事实上,Normally-off D-mode在性能、可靠性、多样性、可制造性以及实际用途方面都是本质上更优越的平台。这之中的原因在于Normally-off D-mode能够充分利用氮化镓材料本身优势。
>>详情如今,大多数半导体都是以硅(Si)为基材料,但近年来,一个相对新的半导体基材料正成为头条新闻。这种材料就是碳化硅,也称为SiC。目前,SiC主要应用于MOSFET和肖特基二极管等半导体技术。
>>详情虽然“续航焦虑”一直存在,但混合动力、纯电动等各种形式的电动汽车 (EV) 正被越来越多的人所接受。汽车制造商继续努力提高电动汽车的行驶里程并缩短充电时间,以克服这个影响采用率的重要障碍。电动汽车的易用性和便利性受到充电方式的显著影响。由于高功率充电站数量有限,相当一部分车主仍然需要依赖车载充电器 (OBC) 来为电动汽车充电。为了提高车载充电器的性能,汽车制造商正在探索采用碳化硅 (SiC) 等新技术。
>>详情在工业、汽车和可再生能源应用中,基于宽禁带 (WBG) 技术的组件,比如 SiC,对提高能效至关重要。在本文中,安森美 (onsemi) 思考下一代 SiC 器件将如何发展,从而实现更高的能效和更小的尺寸,并讨论对于转用 SiC 技术的公司而言,建立稳健的供应链为何至关重要。
>>详情随着新能源汽车和电动飞机概念的兴起,在可预见的未来里,电能都将会是人类社会发展的主要能源。然而,随着电气化在各行各业的渗透率不断提升,每年全社会对电能的消耗量都是一个天文数字。比如在中国,根据国家能源局发布的数据,2022年全社会用电量86,372亿千瓦时,同比增长3.6%;其中,高速发展的新能源汽车在整车制造方面,用电量大幅增长71.1%。
>>详情SiC FET在共源共栅结构中结合硅基MOSFET和SiC JFET,带来最新宽带隙半导体技术的性能优势,以及成熟硅基功率器件的易用性。SiC FET现可采用表面贴装TOLL封装,由此增加了自动装配的便利性,同时减少了元件尺寸,并达成出色的热特性,在功率转换应用中实现了功率密度最大化和系统成本最小化。
>>详情