因该氮化镓快充PCBA设计密度很高,阻容采用0402器件,只能采用不是最优方案的同轴延长线连接(通常推荐采用MCX母座连接,可最大限度减少引线误差)。
>>详情安森美在碳化硅的领域涉足甚早,最早从2004年就开始SiC器件的研发。但是安森美是从2021年收购了GT Advanced Technologies (GTAT)之后开始全方位在碳化硅领域的投入,无论是资金,人力物力以及客户和市场。收购了GTAT之后,开始了安森美在碳化硅领域的垂直整合供应链——从晶体到系统之路!接下来我们将对两个碳化硅的关键的供应链衬底和外延epi进行分析和介绍,这样大家会对于安森美在碳化硅的布局和领先优势会有进一步的了解。
>>详情功率半导体作为电力电子行业的驱动力之一,在过去几十年里硅(Si)基半导体器件以其不断优化的技术和成本优势主导了整个电力电子行业,但它也正在接近其理论极限,难以满足系统对高效率、高功率密度的需求。而当下碳化硅(SiC)和氮化镓(GaN)等宽禁带半导体以其优异的电学和热学特性使得功率半导体器件的性能远远超过传统硅材料的限制。
>>详情从台达电子的上述专利来看,其采用的专利布局策略是基于一个大的电路结构框架,在各个具体的扩展电路上去改进,以专利族1为代表,这种方式可以使得这些专利作为同族专利共同享有同一个最早优先权,另外也能弥补单个专利说明书内容不够丰富的缺陷,便于专利在审查中的修改。这种专利布局方式在很多公司研发出了核心产品技术时通常会采用到的,比如之前所介绍的纳微半导体的专利布局策略也是如此。
>>详情功率半导体作为电力电子行业的驱动力之一,在过去几十年里硅(Si)基半导体器件以其不断优化的技术和成本优势主导了整个电力电子行业,但它也正在接近其理论极限,难以满足系统对高效率、高功率密度的需求。而当下碳化硅(SiC)和氮化镓(GaN)等宽禁带半导体以其优异的电学和热学特性使得功率半导体器件的性能远远超过传统硅材料的限制。
>>详情电力电子转换器在快速发展的工业格局中发挥着至关重要的作用。它们的应用正在增加,并且在众多新技术中发挥着核心作用,包括电动汽车、牵引系统、太空探索任务、深层石油开采系统、飞机系统等领域的进步。
>>详情松下与英飞凌曾共同研发了增强型GaN GIT功率器件,两家公司都具有GaN GIT功率器件的产品。对于其栅极驱动IC,如上期所介绍的,英飞凌对其GaN EiceDRIVER™ IC已布局有核心专利;而松下在这一技术方向下也是申请了不少专利,其中就包括采用RC电路的负压关断方案。
>>详情在电动汽车牵引逆变器、DC/DC 转换器和车载充电器 (OBC) 等一些需求旺盛的关键应用领域,器件特定的导通电阻 ( R DS(on) × A,其中A是传导面积)是影响器件电容的关键品质因数 (FOM),从而影响硬开关 (HS) 和软开关 (SS) 拓扑中的效率。
>>详情去年,TechInsights通过一系列博客展示了电气特性的力量,对于揭示碳化硅器件规格书远远不能提供的碳化硅器件特性。
>>详情本文介绍了镓未来和纳芯微在氮化镓方面的技术合作方案。 镓未来提供的紧凑级联型氮化镓器件与纳芯微隔离驱动器配合,隔离驱动器保证了异常工作情况下对氮化镓器件的有效保护,完美展现了氮化镓在先进应用中高效率低损耗的核心价值,让工程师放心无忧采用氮化镓。
>>详情