无论你身在何处,都会听到“未来汽车”这一说法。随着汽车行业继续凭借自动驾驶汽车实现飞跃,那么当人们真的无需亲自驾驶汽车时,驾驶体验又将会变得怎样呢?这不再是一个假设性的问题。由于我们的注意力将不再聚焦在操作车辆上,因此车载娱乐系统将变得更加重要。越来越具吸引力的信息娱乐系统已使驾驶员和乘客在收集有关其汽车和旅程的重要信息的同时,可以充分享受驾驶的乐趣,这种趋势将会进一步加快。
>>详情斯坦福大学加州动力设计实验室的工程师们制作了一个视频,视频中一辆德罗宁DMC-12复古跑车正在绕着一个封闭的场地绕着障碍物进行熟练的漂移。只不过这些动作都是这辆汽车自己做出来的。
>>详情目前,与燃油汽车成本相比,电动汽车电池的成本仍然居高不下。美国能源部(US Energy Department)披露了三种新能源储能技术,或将帮助电动汽车进入汽车主流市场,成为人们负担得起的消费。
>>详情自动测试车配备了车载设备,可以监测如位置、速度、加速度和航向等车辆状态,每隔十分之一秒发出一次。利用专门的短程通信(DSRC)来实现无线传输(DSRC是一种类似于专为移动用户设计的Wi-Fi的标准)。此外,分布在测试设施周围的路边设备接收这些信息并将其转发给一个交通模拟模型,该模型可以通过将测试设备简化为包含交通信号动作的等效网络几何来模拟该测试设备。一旦计算机模型接收到测试车信息,就会创建测试车的虚拟副本。然后
>>详情控制器局域网(CAN)协议是在20世纪80年代中期专为汽车行业设计的一种规范,可在日益增长的互联应用中减少数据传输的布线复杂性(重量、数量和成本)。
>>详情电气化已为汽车动力系统创造了一个新的范例——无论该设计是混合动力汽车(HEV)还是电动汽车(EV),总有新的设计难题要解决。在这篇技术文章中,我想要强调高压电流感应的一些主要挑战,并分享其他资源来帮助和简化您的设计过程。
>>详情当前市面上的主流方案是通过硬编码的方式实现,但这种方式的缺点也显而易见:只有懂编程的工程师才能做,一般工程师无法胜任;当需要修改刷新流程的时候,刷新工具必须重新编译生成软件。这对于刷新工具的维护极为不便。
>>详情汽车雷达、5G 蜂窝、物联网等射频 (RF) 应用中,电子系统对射频源的使用量与日俱增。所有这些射频源都需要设法监测和控制射频功率水平,同时又不能造成传输线和负载的损耗。此外,某些应用需要大功率发射器输出,因此设计人员需要设法监测输出信号,而非直接连接敏感仪器,以免受高信号电平影响导致损坏。
>>详情