目前,纯电动汽车 (BEV) 和插电式混合动力汽车 (PHEV) 的运行电池电压为 800V,超过了常规 400V 系列。采用 800V 电池是为了提高性能,减少快速充电的时间,应对不断增加的功耗并延长续航里程。
>>详情随着汽车电动化、智能化、网联化的快速发展,车内电子系统规模和复杂性日益增强,智能化系统如车道偏离警告、主动避撞等系统越来越普遍。这些系统在应用时对车载网络的实时性、带宽和可靠性提出了更高的要求。同时,针对未来智能汽车电子电气架构,车载网络也需要新型的通信技术支持。
>>详情在设计和部署适应恶劣汽车环境的先进解决方案时,设计人员需要用户友好、快捷且对硬件要求较低的交互式模拟仿真工具。采用分布式智能能够释放系统性能,但对系统韧性和实时反馈能力提出了要求。
>>详情随着“碳中和”的号召越来越大,越来越多的汽车行业转型生产电动汽车以此来解决碳排放问题,冷却系统成为电动汽车热管理发展的重要研究课题。液体冷却的热管理性能卓越,可显著提高能效。得益于这一特点,电动汽车充电站、电动汽车基础设施等高热通量电子系统都采用了液体冷却技术。
>>详情交流充电桩适合在家中或工作场所为电动汽车充电,因为目前车载充电器的额定功率通常达到11千瓦,充满电需要8~10小时。然而,对于假期等长途旅行,消费者希望在休息期间充电更快。
>>详情电动汽车 (EV) 车载充电器 (OBC) 正在经历快速变化,它允许消费者直接通过家里或公共或商业网点的交流电源为电池充电。提高充电速率的需要导致功率水平从 3.6 kW 增加到 22 kW,但与此同时,OBC 必须安装在现有的机械外壳内,并始终由汽车携带,而不影响行驶里程。,有人提出将 OBC 功率密度从 4 kW/L 提高。
>>详情汽车行业对电气化的追求导致了非同寻常的汽车的爆炸式增长。环绕汽车前部、后部或侧面的新型纤薄设计正在取代过去的大型单一功能车灯。未来的汽车灯将必须显示复杂的图案和算法,同时由于需要超越传统的照明或信号而处理以前闻所未闻的热管理、外形尺寸和成本限制。
>>详情汽车电气化是一个仍然存在许多汽车制造商关注的技术挑战的领域。面向可持续未来的动力总成系统和高压技术系统的电子设计师和工程师对实现更大的电动汽车续航里程、降低设计复杂性和外部组件成本感兴趣。通过降低复杂性和设计成本来限度地提高电动汽车的自主性是现代汽车愿景的主要目标。电动汽车生态系统深受碳化硅(SiC)电力电子器件的影响,这使得系统能够获得多种性能优势。
>>详情牵引逆变器的作用是将电动汽车电池的高压直流转换为电动机所需的交流电,牵引逆变器控制电机的转速和扭矩,其效率直接影响电动汽车的输出功率、散热表现以及续驶里程。
>>详情